

Health Care Needs for LEO and Beyond

The Application of Medical Informatics to Space Flight

Associate Administrator
NASA Office of Life & Microgravity Sciences & Applications

Agency & Enterprise Goals

Agency Mission

Advance & communicate scientific knowledge & understanding of the Earth, the solar system, & the universe & use the environment of space for research

Explore, use, & enable the development of space for human enterprise

Research, develop, verify, & transfer advanced aeronautics, space, & related technologies

HEDS Goals

Expand the frontier

Expand knowledge

Enable and establish permanent and productive human presence in Earth orbit

Expand commercial utilization of space

Share the experience and discovery of human space flight

long term

long

term

near

term

Elements of Human Space Mission Design

Establishment of Medical Policy

National

International

- Medical Policy Board at NASA Headquarters
- Occupational Health and Safety Executive Board at NASA HQ
- Aerospace Medicine Board at NASA JSC
- Institutional Review Board
- Animal Care and Use Committee
- Bioethics group chaired by Dr.
 Baruch Brody of Baylor
 College of Medicine
- □ Astronaut *longitudinal studies*

- Multilateral Medical Policy Board
- Multilateral Space Medicine Board/Working Group
- Multilateral Institutional Review Board
- Multilateral Animal Care and Use Committee

Medical Care Criteria

- Be able to
 - Treat crew members for a wide range of illness, injury, or psychosocial matters
 - Return them to effective duty
- Maximize the chance of mission completion & successful elective return
- Minimize the impact of a crew member's illness or injury on any other crew member
- Provide for
 - Stabilization and timely evacuation of a sick crew member to a definitive care facility
 - Stabilization and timely evacuation without affecting the safety of remaining crew
 - Timely consultation via telemedicine

Health Maintenance Criteria

 Ability to function as a productive member of the flight crew and perform assigned duties

- Ability to maintain adequate orthostatic tolerance during deorbit & landing
- Ability to execute (rapid &) unaided egress from the spacecraft

An In-flight Health Model

microgravity

Adaptation

- Red blood cell loss
- Fluid loss
- Cardiovascular adjustment
- Changes in neural control (blood pressure)
- Decreased receptor sensitivity?

Pathophysiology

- Radiation
- Bone & muscle loss
- Closed environment
 - life support
 - psycho/social/cultural
- Immunology
- Metabolism

hypo-volemic syndrome

degenerative diseases

A Post-flight Health Model

return to gravity

- Neurosensory motor control dysfunction
- Diminished cardiovascular reserve
- Decreased immune response
- Dehydration

- Regional osteopenia
- Decreased muscle endurance & strength
- Increased risk of kidney stone(s)
- Radiation career dose exposure

cardiovascular & neurological compromise

health risks

Space Flight Medical Events

Adaptive

- Space Motion Sickness 30%
- Bone loss 1%/month after 1st month
- Muscle strength
 deterioration 1%/week to
 max of 30%
- Head and neck congestion-80%
- □ Sleep difficulty 50%

Illness/injury

- □ Headaches 60%
- □ Kidney stone(s) <1%
- □ Skin disorders 15%
- □ Urinary retention 1%
- □ Retinal hemorrhage <1%
- Cardiac dysrhythmias -2%
- Orthostatic intolerance -20%

A Shift Toward Primary Prevention

primary prevention

secondary prevention

tertiary prevention

Pre flight

In flight

Post flight

Preventive Health Screening/Counter- measures	Preventive Health Screening/Improved Countermeasures	Preventive Health Screening/Advanced Countermeasures
Limited Countermeasures & Intensive Monitoring	Improved Countermeasures & Intensive Monitoring	Effective Counter- measures/monitoring
Medical Care & Intensive Rehab	Rehabilitation	Health Maintenance

1999

2006

2010

Current In-flight Medical Capabilities

Space Shuttle

- Medical kit flown on each flight
- Defibrillator flown when appropriate (based upon flight requirements and payload complement)
- At least 1 crew member trained to deliver basic primary care should the need arise
- When a physician flies, he/she assumes crew medical officer role

International Space Station

- Crew Health Care System (CHeCS)
 - multipurpose medical station for astronaut health maintenance
 - countermeasures station
 - environmental monitoring
- "Ambulance" or "lifeboat" capability in development with the Crew Return Vehicle

Health Care Needs Beyond LEO

The remoteness of exploration-class missions generates a unique set of requirement for health care systems

- Compact
- Lightweight
- Portable
- Low maintenance
- Easy-to-use
- Autonomous
- Minimally invasive

- Medical informatics is the cross-cutting technology
- Interface capability
- Presentational/display versatility
- Flexibility
- Computational power

Telemedicine

Telemedicine address
health care needs in space
by conquering time and
distance

- Training
- Data Collection
- Trend analysis
- Health maintenance planning and execution
- Diagnostic support
- Consultations

Trend: Haptic "Smart" Systems

- Cybersurgery
- Microsurgical probes
- □ Tissue engineering

Trend: Virtual Reality

Biocomputation

- improved skills
- pre-surgeryplanning
- new techniques testing
- immersive robotic surgery

Trend: Portability

- Sensors
 - "smart" T-shirts
 - "smart" suits
 - force interface
- Biochemical probes
- Immersive technologies
- Innovative displays
 - "heads-up" display
 (Wirlesss Augmented
 Reality Prototype,
 WARP)

Trend: Biologically-inspired Technologies (funded)

Robotics

- Biologically-inspired robots
- Artificial trunks, tentacles, worms, snakes, and whiskers
- manipulation and locomotion
- Human-centered Systems
- Adaptive automation
- Multipurpose tactile interface
- Maintaining spacecraft operator alertness
- Performance measurement, evaluation, and modeling
- Non-invasive video motion capture of astronaut activity
- Cognitive prostheses

Smart Materials and Structures

- Self-assembled hard nanocomposite coatings
- Hollow helix as nanotube
- Artificial spider as dragline silk
- Motor proteins as molecular cargo
- Artificial hair cells and sensors
- Functionally-adaptive biomimetics
- Artificial neural device
 - Wireless biosensors

